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A Primer on Bayesian Inference for Biophysical Systems

Keegan E. Hines'""
"Department of Neuroscience, University of Texas at Austin, Austin, Texas

ABSTRACT Bayesian inference is a powerful statistical paradigm that has gained popularity in many fields of science, but
adoption has been somewhat slower in biophysics. Here, | provide an accessible tutorial on the use of Bayesian methods by
focusing on example applications that will be familiar to biophysicists. | first discuss the goals of Bayesian inference and
show simple examples of posterior inference using conjugate priors. | then describe Markov chain Monte Carlo sampling
and, in particular, discuss Gibbs sampling and Metropolis random walk algorithms with reference to detailed examples. These
Bayesian methods (with the aid of Markov chain Monte Carlo sampling) provide a generalizable way of rigorously addressing

parameter inference and identifiability for arbitrarily complicated models.

The proper analysis and interpretation of experimental data
are vital in the endeavor to understand natural phenomena.
Here I describe the use of Bayesian inference, a statistical
paradigm that has gained popularity in many fields
including astrophysics (14), systems biology (12), and
econometrics (6), among others. However, the adoption of
Bayesian methods has been relatively slower in the study
of protein biophysics, a field that relies primarily on more
classical techniques. It is not my intention here to argue
the merits of Bayesian methods over others, as this has
been discussed previously (1,11,24). Instead, my aim is to
provide an accessible introduction and tutorial on the use
of these methods with a focus on problems that should be
familiar to the experimental biophysicist.

Bayesian inference

Suppose that we make some measurements, y, and want to
use these data to gain an accurate estimate of some model
parameters, f. In Bayesian inference, the primary goal is
to compute the posterior distribution. This is a probability
distribution over the parameter space that quantifies how
probable it is that a particular value of the parameter(s)
has given rise to the observed data. This distribution pro-
vides not only an optimal point estimate of the parameters
(the maximum a posteriori or MAP estimate), but also a
quantification of the entire parameter space, yielding a
straightforward way to calculate confidence intervals. In
this way, we consider the entire parameter space and ask
which regions are most probable, given the data we saw.
In some special cases, we can derive simple expressions
for posterior distributions by using conjugate models. For
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more complex models, we can take advantage of computa-
tional methods that allow us to estimate posterior distribu-
tions of arbitrarily high dimension.

Consider that we treat not only the data y as random, but
also treat the parameters of interest 6 as random variables.
We then need to address the joint probability of all random
variables, p(y,0). From the definition of conditional proba-
bility, we can write

p(y,0) = p(y[0)p(6) = p(Oly)p(y)- )

We have two expressions for the joint density p(y,d), and
we can equate them and rearrange to yield Bayes’ rule,

_ pOIO)p(6)

p(ly) o)

@

By treating both the parameters and the data as random vari-
ables, a simple manipulation of conditional probabilities
yields a general expression for p(f|y), the posterior distribu-
tion of the parameters. The other components of Bayes’ rule
are: p(y|#), the likelihood of seeing the data given the
parameters; p(f), the prior distribution of the parameters;
and p(y), the marginal likelihood of the data. In practice,
we generally only need to quantify the posterior distribution
up to a constant of proportionality, so p(y) is often ignored
because it is independent of #. This yields a more common
form of Bayes’ rule,

p(0ly) <p(y|0)p(6). 3)

Computing the posterior distribution is then simply a matter
of deciding upon the likelihood and the prior distribution
and combining them. I will next show that if we put a little
thought into finding prior distributions that are conjugate to
the likelihood, then we can arrive at a simple expression
for the posterior. Because we will not always be able to
use a conjugate prior, I will later discuss the powerful
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computational methods that allow to us calculate arbitrarily
complicated posterior distributions.

Conjugate models

I will motivate our first foray into Bayesian modeling by
taking as an example the experimental method of single
molecule photobleaching (9,28). This is a powerful method
for determining the interaction and stoichiometries of pro-
tein complexes. The strategy consists of tagging a fluores-
cent probe to a protein subunit of interest and then
imaging single molecules. After sufficient time, the fluoro-
phores will photobleach, and by counting the number of
photobleaching events, we get a direct readout of how
many subunits are associated. However, there is a nonnegli-
gible probability that a fluorophore is already bleached
before the measurement started. We will quantify this prob-
ability of being prebleached as 1—6; that is, § is the proba-
bility that a fluorophore bleaching event will be successfully
detected. The result of this prebleaching is that a complex
of n molecules might result in less than n bleaching events.
Therefore, the ensemble of many such counts will be bino-
mially distributed such that the probability of seeing y
bleaching steps when n are possible goes as

mﬂy(l —6)". @)

p(y|0) =

As a simple inference problem, let us suppose that we
want to estimate the prebleaching probability of an un-
known fluorophore. To do this, we use a protein system
that is well known so that we can assert that n is fixed to
some known value. We perform a photobleaching experi-
ment and gather N independent observations of bleaching
counts and denote the total dataset as yy. Our goal is then
to estimate 6 from yy. Because each data point is drawn
independently, Bayes’ rule is

p(Blyn) (Hp(yi|0)>p(0)- ©)

i=1

Because we know the likelihood is a binomial distribution,
we can begin to fill in the components of Bayes’ rule:

N

p(0lyy) (H nilﬁ”(l - 0)”")17(0)- (©)

i—1 (I’l _yl)'yl'

All that remains is to decide on a form of the prior distribu-
tion over 6. Because § is the probability of a binary event, it
will be useful to utilize a distribution that is defined only on
the unit interval. More importantly, it will be very useful if
we choose a prior distribution that combines with a binomial
likelihood in a helpful way. A distribution that accomplishes
both of these goals is the beta distribution, Be(8;a,b),
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T'(a+b)
I'(a)T'(b)

where I'( ) is the gamma function and the notation Be(#;a,b)
denotes that Be( ) is a probability distribution over variable
0 and is parameterized by a and b. Depending on how we
choose the hyperparameters a and b, we can quantify any prior
confidence we have about the value of 6. Alternatively, letting
a=b=1resultsina flat prior distribution over 6. Fig. 1 shows
beta distributions of different values of a and b. Note that this
distribution provides a very flexible way for us to quantify any
prior knowledge we might have, or we can adopt a flat prior.
Therefore, our choice of prior distribution, which is often
motivated by mathematical convenience, does not necessarily
introduce systematic bias in our parameter estimates.

The most useful outcome of using a beta prior is that this
distribution is conjugate to our binomial likelihood. Return-
ing to Bayes’ rule, we now have a form for both the likeli-
hood and the prior in our model:

Be(6;a,b) = 0 (1-0)", @)

plblyn) < (H - 6)"‘”)
F(CZ + b) 0(1—1 (1 _ 0)]771 (8)
T(a)T(b) '

We can remove some terms that do not depend on 6 and we
still retain a distribution that is proportional to the posterior
distribution,

N
p(Blyn) 6 (1= 0)" ' T]o" (1 — 6)"". )

i=1

It is now obvious that we can combine the components from
the likelihood and the prior,
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FIGURE 1 The beta distribution is shown with three different parameter-

izations. Used as a prior, the beta distribution provides a flexible way to
quantify any prior knowledge we might have, or to specify a lack of prior
knowledge. To see this figure in color, go online.
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Note that this form of the posterior distribution has the
same basic form as a B-distribution. That is, the posterior
distribution of § is

p(Olyv) = Be(0;A,B), (12)
where
N
A=a+> y, (13)
i=1
N
B = b+2nfyi. (14)

i=1

This is the primary benefit of thinking carefully about our
prior distribution. A conjugate prior combines naturally
with the likelihood and results in a posterior distribution
of the same functional form as the prior. Therefore, the pos-
terior will have a simple closed form with parameters that
are easily calculated from the data.

This example problem is continued in Fig. 2. In the left
column are two simulated datasets drawn from binomial dis-
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FIGURE 2 Posterior estimation in the beta-binomial model. (Left) Sam-
ples drawn from a binomial distribution with n = 4 and 6 = 0.8 (fop) and
0 = 0.6 (bottom). A total of N = 50 samples are drawn. (Right) The result-
ing posterior distributions of 6. To see this figure in color, go online.
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tributions with n = 4 and 6 equal to 0.8 (fop) and 0.5
(bottom). The right column shows the corresponding poste-
rior distributions for . In this example, the hyperparameters
of the prior distribution were both set to 1, which resulted
in a flat prior distribution. Because of this, the peak of the
posterior (MAP estimate) corresponds exactly to what we
would estimate by maximizing the likelihood (i.e., finding
the best fit to the data). In addition to this point estimate,
we also have a quantification of the whole parameter space
and would easily be able to quantify parameter confidence
and construct confidence intervals. Therefore, by choosing
a conjugate prior, calculating the full posterior distribution
over the parameters is achieved effortlessly.

I will describe one more example of a conjugate model
that will also serve to transition us toward more generally
applicable computational methods. Imagine that we have
used patch-clamp recording in order to measure the currents
through a single ion channel. The transitions between open
and closed states should follow Markovian dynamics, which
prescribes that the duration of time spent in any state should
be exponentially distributed. From our single channel
recording, we tabulate the durations of each dwell-time
and are left with a set of exponentially distributed random
variables. It is our goal to estimate the corresponding time-
scale parameters of each distribution. Previous authors have
thoroughly established successful methods for calculating
these parameters using maximum likelihood methods
(2), but I describe the Bayesian way of approaching this
problem.

Again, we imagine the data are drawn from a single expo-
nential distribution with unknown timescale parameter,

i ~ 0" (15)

where I have introduced the notation y ~ f{ ) to denote that
the random variable y is sampled from the distribution f{ ).
Given some data yy, we want to estimate the posterior
distribution over 6. Recalling Bayes’ rule,

p(Blyn) = (Hp(y,-W))p(@) (16)

i=1

= (ﬂae“’m) p(0). a7

i=1

Again, we want to carefully choose p(¢) so that it combines
usefully with p(y;|6). The conjugate distribution to an expo-
nential likelihood is the gamma distribution (Ga),

bﬂ
[(a)

Ga(f;a,b) = g e =), (18)

Combining likelihood and prior, we arrive at
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p(Blyw) e (Hp(yfh?))p(ﬁ) (19)

i=1

(Hae 6\,) gl p(=0h) (20)
i=1

N
o (H0e<—f’>’f>> g o0 (1)

_ gty (s ) 22)

We see that the posterior distribution of ¢ is a gamma distri-
bution with parameters that can be calculated from the data,

p(flyv) = Ga(6;A,B), (23)
where
A =a-+N, 24)
N
B=0b+ Zy,-. (25)

I now extend this model into a more interesting case that
will lead into our first computational method, Gibbs sam-
pling. Instead of modeling the data as drawn from a single
exponential distribution, consider that the data are drawn
from a mixture of multiple exponential distributions, a com-
mon case for single ion channel recordings. We imagine that
each component has a distinct timescale parameter ¢ and
mixture weight w. The data are drawn from some number
of distinct components as

Vi~ wilie Y Fwarbhe ™™ L wilge ' (26)

K
= wilie ", @27)
j=1

where the mixture weights sum to 1,
T ow=1
Zj:le -

Without loss of generality, I focus on just a two-component
exponential mixture for simplicity:

yi~ wlﬁle_a'y + W202€_02y. (28)

In this two-component model, we know that w; + w, = 1
and could reparameterize these to a single free parameter,
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but I will continue with this notation in order to generalize
for later results. Our task then becomes estimating from
the data the four resulting free parameters (although truly
only three free parameters as wy + w, = 1):

(01792,W17W2|)’N (HP y,01,027w1,w2)> (29)

x p(01, 02, wi,wy).

We wish to estimate a four-dimensional posterior distribu-
tion that spans the parameter space of the two timescale pa-
rameters and the two weight parameters. This kind of
model will likely not have a simple closed form for the pos-
terior, no matter how clever we may try to be with conjugate
priors. However, we will be able to estimate this distribution
using a numerical method called Markov chain Monte Carlo
sampling (MCMC). The general strategy with MCMC is that
while we may not be able to express a simple form for the pos-
terior distribution, we could approximate its properties if we
can draw a large number of samples from the distribution in
which we are interested. Importantly, even though we do not
know the posterior distribution, we can draw samples by con-
structing a Markov chain whose limiting distribution is the
desired target distribution. Then, by simulating this chain
for many iterations, we draw many samples from the under-
lying distribution. Generating a Markov chain with a desired
limiting distribution can be achieved in several ways, and I
first describe Gibbs sampling.

Gibbs sampling

While we may not be able to devise a simple form for
the posterior, p(6y,0,,wi,w2|yy), we can, with some care,
devise a simple form for the conditional posterior of each
parameter. As it turns out, this simple advance allows us
to estimate the full posterior distribution using an MCMC
algorithm called Gibbs sampling (4,5). Before returning to
our example, I describe Gibbs sampling in general.

Consider a general joint probability distribution between
two random variables, p(A,B). From the definition of condi-
tional probability,

_ p(A,B)
P(AIB) = =55 (30)
p(A,B) = p(B)p(A|B), (31)
p(A,B) <p(A|B). (32)

Similarly, we could calculate the conditional density with
respect to the other variable,

p(B|A) =

(33)
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p(A,B) = p(A)p(B|A), (34)

P(A,B) xp(B|A). 35)

Thus, the joint distribution, p(A,B), is linearly proportional
to both conditional distributions, p(A|B) and p(B|A). This
fact holds generally for joint distributions over any number
of random variables and is the basis of Gibbs sampling. The
strategy is that while the joint distribution, p(A,B), might
have no simple closed form, we can likely derive a simple
form of each univariate conditional distribution. More
concretely, suppose we have gathered some data yy and
want to estimate parameters A and B. The joint posterior
P(A,Blyy) may have no simple, closed form. However, for
any particular values a,b of the random variables A and B,
the joint p(A,B|yy) is proportional to each of its univariate
) % p(Alyn, B = b) and p(A,Blyy)
Dp(B|yn, A = a). If we can find a simple form for each univar-
iate conditional p(Alyn,B) and p(B|yn,<A), then we can
approximate p(A,B|yy) with a Markov chain that alternately
samples p(Alyy,B) and p(B|yn,A). More generally, let
p(#y,...,0k|x) be a K-dimensional posterior distribution
with no simple closed form. If each univariate conditional
distribution has a closed form such as p(6,|6s,... Oxx) o
F(0,), then Gibbs sampling proceeds by sequentially sam-
pling each parameter conditioned on the previous samples
of all other parameters. For each iteration of the algorithm,
we draw the ith random sample of each parameter according
to the univariate conditional distributions,

0, ~p(6:]65",05",....0 " x) = F(6)), (36)

0, ~p(0:6,,65",....0¢ ", x) = F(6,), 37)

0y ~ p(0)0},65,....0 ", x) = F(03), (38)
(39)
0 ~ p(0x|0,,05, ..., 0k_,,x) = F(). (40)

Therefore, being able to draw samples from each univariate
conditional posterior allows us to construct a K-dimensional
Markov chain that explores the parameter space in propor-
tion to the posterior probability.

I now return to the two-component exponential mixture
model. Recall that we would be unable to devise a sim-
ple form for the four-dimensional posterior distribu-
tion, p(fy,02,wi,wo|yn). However, we will see that it is
straightforward to compute each conditional posterior,
p(01]02,w1,w2,y), and so on (for brevity, I now adopt the no-
tation p(6,|...) to denote a conditional probability with
respect to all other random variables in the model).

2107

First, I employ a trick known as data augmentation (a name
that is somewhat of a misnomer, because we will be augment-
ing the parameters and not the data) by which we make the
model more complicated in order to simplify the sampling
scheme. In particular, I add new latent indicator variables
S1,82,...,8y (one for each data point) that serve to label from
which component a particular data point was likely drawn.
For our two-component mixture model, each indicator vari-
able points to one of the two mixture components, s;€ {1,2}.
Our posterior distribution now has many parameters,

N
P01, 02, w1, wa, 51, .., 8w |yw) HP()’:‘\---)
i 41)
X p(ﬁl,ﬁz,wl,wz,sl, ...,S}\])7

but in the process of MCMC sampling, we marginalize out
the latent variables s; that we introduced,

p(01562awl7w2|yN) = /P(01a02>W1aW2751»~~~7SN|YN)

X dSldSZ...dSN,
42)
p(01, 02, wi,walyy) = Z P01, 02, w1, w2, 51,0y 5w [yw)-
sie{1,2}
i=1.N
43)

Therefore, even though we made the model more compli-
cated by adding the s;, we return to the desired model
when we marginalize out the latent variables, which will
be achieved with MCMC sampling of those parameters.

To create our Gibbs sampler, we need the conditional pos-
terior distribution of each parameter, which is composed
only of those components from the likelihood and prior
that are relevant to each parameter. We seek

p(6;...) <pOwl...)p(6;), (44)
p(wil...) <p(uwl...)p(w)), 45)
p(sil-..)xp(il...)p(si)- (46)

Relying on our previous results, we simply need to devise a
conjugate prior for each parameter and we will be able to
sample from the corresponding conditional posterior. Now
that we have the latent indicators s;, let A; be the set of all
i such that s; = j. For each component, j, we already know
a good conjugate model for estimating 6;: the exponential-
Gamma model. Thus,

<Hwe /”)Ga (6;;a,b) 47)

€A
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= Ga(ﬁ,,a—l— |A,’,b+Zy,>, (48)

i€ A

where |A;| denotes the number of elements in the set A;. For
each indicator variable, we need to sample s; from the com-
ponents {1,2} with probability equal to the posterior proba-
bility that data point i was drawn from each component. If
we assume a flat prior on s;, then this calculation boils
down to calculating the likelihood that data point i was
drawn from each component,

p(si = 1. )cp(yilsi = 1,...)p(s = 1),  (49)

<p(ylsi = 1,...), (50)
o« fe (51

and
plsi = 2|..)ep(ilsi = 2,...0p(si = 2),  (52)
<p(ylsi = 2,...), (53)
o fre ", (54)

We then draw s, from a categorical distribution, s; ~ Cat(p).
The categorical distribution is the generalization of the sim-
ple Bernoulli trial (or coin flip) to situations where we draw
a sample from one of K categories, each category being
drawn with probability p,. That is, s; ~ Cat(s;
P1:P2,---Pk)- In this example, our categorical distribution
has only two categories,

s;i~ Cat(s;p(si = 1...),p(si = 2]...)). (55)

Thus, for each data point i we sample the indicator variable
according to which component is likely to have generated y;,
conditioned on the current values of 6,,6,.

The last part of our sampling scheme is the mixture
weights w;, for which we will encounter a new conjugate
prior model. Note that the indicator variables s; are drawn
from a categorical distribution and that the weights w; for
all the components must sum to 1. Consider the joint poste-
rior distribution of all the mixture weights (here, just two),

pwi,wal...) <p(yn|... )p(wi, wa). (56)

To sample the mixture weights, we take advantage of the
conjugacy between a categorical likelihood and a Dirichlet
prior. The Dirichlet distribution is a distribution over a vec-
tor of probabilities, which must sum to 1. A K-dimensional
Dirichlet distribution is defined on the (K — 1)-dimensional
simplex, which ensures that the K elements drawn from this
distribution will sum to 1. The Dirichlet distribution, with
parameters aj,...,0k 1S
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Dir(wy, ..., Wk; 0y, ...y o) =

. K
77'. HW]‘_J‘/*' . (57)

This distribution, while perhaps unfamiliar, can be seen as a
generalization of the beta-binomial model we used earlier.
In that instance, we were interested in a binomial likelihood
that quantified the occurrence of binary events. In particular,
we wanted to know the parameter 6, the probability of a suc-
cessful event. In that case, we had two possible outcomes
(success or failure), with probability ¢ and (1 — ), respec-
tively. Because the categorical distribution is a generaliza-
tion of the Bernoulli to situations where we sample from
many possible outcomes, the Dirichlet distribution is a
generalization of the beta, and quantifies the vector of prob-
abilities of each outcome. Using this as a prior over the
weights wy,w, results in a Dirichlet posterior,

pwi,wy|...) = Dir(wy,wa; |A1] + ay, |A2] + o). (58)
With this, we have all the ingredients we need for our Gibbs

sampler. For each iteration of the algorithm, we draw
random samples for each parameter as

b+ Zyi), (59)

ieAj

Wl,W2|... NDiI‘(Wl,Wz; |A1|—|—a17|A2|+a2), (60)

Sil... ~ Cat(s;; p(s; = 1]...),p(s; = 2[...)). (61)

I next demonstrate this MCMC algorithm with simulated
data. The data will be drawn from a mixture of two exponen-
tial distributions with timescale parameters #; = 1 and 6, =
0.01, and with w; = 0.25 and w, = 0.75. Fig. 3 shows a his-
togram of the logarithm of each data point (25) and a rug
plot of all the data is shown below the histogram. When
visualized in this way, we can be sure that there are two
distinct components within the data. One way to view the
task of fitting these data is that we need to decide from
which component each data point was drawn and then use
the label assignments to estimate each 6; and w;. That is,
we want the assignments of the s; to yield high posterior
probability. The Gibbs sampling scheme we just laid out
will achieve this and the result of this sampler is visualized
in Fig. 3. Here, each datapoint is labeled according to which
component it is assigned: there is a blue component and a
red component. These labels correspond to just one iteration
of the Gibbs sampler and thus represent a high posterior
explanation of the data, but not the only one. Recall that
we want to explore all the values of the parameters that yield
good fits to the data, so we want to explore the full posterior
distribution. By sampling many label assignments, all of
which yield high posterior probability, we marginalize out
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FIGURE 3 An exponential mixture model. Simulated data drawn from a
mixture of two exponential distributions. Data are plotted logarithmically
for visualization. The result of using a Gibbs sampler to infer the parameters
of a two-component mixture model are also shown. Data points are colored
corresponding to the component from which they are likely to have been
generated. The probability density of each component is shown and the
sum of both densities is shown (shaded) and matches well with the histo-
gram. To see this figure in color, go online.

the s; and yield accurate estimates of the total uncertainty in
the model parameters in which we are actually interested.

Fig. 4 shows the result of our Gibbs sampler for each of the
model parameters of interest: 61,0,,w1,w,. The top row shows
the MCMC trajectories for the two dimensions of the Markov
chain corresponding to the f-parameters. Note that on the
first iteration of MCMC, the parameters are initialized some-
where arbitrary in the parameter space, but quickly converge
to a region of the parameter space that yields high posterior
probability. This process of burn-in is discussed in greater
detail in the Supporting Material. After the Markov chain
has converged, subsequent transitions yield samples from
the posterior distribution. For each parameter, the positions
of the chain can be aggregated to approximate the marginal
posterior distribution of each parameter and this is shown
in the second row of Fig. 4. This histogram of MCMC sam-
ples approximates the underlying marginal posterior and pro-
vides an accurate estimate of the parameter values and their
uncertainty. Along with each histogram, the true parameter
value is plotted as a vertical line and we see that our posterior
distributions, from which we might construct a 95% confi-
dence interval, accurately capture the underlying parameter
values. The bottom-half of Fig. 4 similarly shows the
MCMC trajectories and marginal posterior distributions for
the weight parameters w; and w,. Again, we see that our
MCMC estimate of the posterior distribution accurately cap-
tures the true parameter values and provides a natural way to
quantify parameter confidence.

Using MCMC, we are able to draw samples from a pos-
terior distribution that is unknown to us, and therefore we
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can effectively estimate posteriors of any dimensionality.
For Gibbs sampling, we only need a convenient form for
each conditional posterior distribution and the full posterior
can be estimated. For many inference settings, this will be
adequate because conjugate models have been devised for
many kinds of distributions. Even very complex probability
models can be deconstructed into simple conditional poste-
riors for Gibbs sampling. For example, hidden Markov
models tend to have many free parameters describing tran-
sition dynamics and emission distributions (18). However,
with useful data augmentation, the relevant conditional pos-
teriors can be easily calculated and efficient Gibbs sampling
schemes devised (19,21). This has already been applied in
biophysical settings including modeling ion channel gating
(20,24). However, the Gibbs sampler, despite its simplicity
and elegance, is inevitably limited to those models where
we can calculate conditional posteriors. In some settings,
this will not be possible and more general MCMC methods
must be used.

Metropolis-Hastings

In many cases, it will not be possible to derive conditional
posteriors, because the model parameters may be related
to the likelihood only through some complex model func-
tion. In these settings, we need to turn to more general forms
of MCMC. As a motivating example, we will consider the
very general problem of curve-fitting. In common biophys-
ical investigations, some theory is evaluated by its ability to
explain carefully controlled experimentation. Our model,
with parameters 6;,0,,...,0x denoted 5, makes a prediction
about how some measurable signal might look when exam-
ined with respect to some controlled variables. That is, our
model prescribes some function f(g, x), which specifies how
the observable signal f should depend upon model parame-
ters 6 and independent variables x.

As a concrete example, imagine we are modeling the acti-
vation of a voltage-gated ion channel. The simplest model
would be to assume the channel can exist in a conducting
and nonconducting state and the equilibrium between these
states is perturbed by transmembrane voltage. Suppose we
have measured a conductance-voltage (G-V) curve for this
channel and want to fit it to a two-state Boltzmann distribu-
tion that quantifies the probability of the channel opening as
a function of voltage. In this case, the independent variable
is voltage and our two-state model predicts that our G-V
curve should follow the form

1

1 +exp(—(V —a)b)’ ©2)

fla,b,V) =

where parameters a and b might have some biophysical
interpretation. Once we have made some measurements
about how the channel activates at various controlled volt-
ages, our goal is to find a good fit between the above
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equation and our data. That is, we want to fit the data by
exploring the parameter space of a and b until the model
prediction adequately matches the measured data. We might
embark on this curve-fitting endeavor by searching the
parameter space for the point that minimizes the error be-
tween the model and the data (13,15) and we would thus
accept the resulting values of a and b as indicative of the
true values of the underlying biophysical parameters. How-
ever, it has been noted that even for simple biophysical
models, achieving a good fit to the data provides no guar-
antee that the recovered parameter estimates are accurate
due to the pitfall of parameter nonidentifiability (11,23).
Therefore, we might prefer to take a Bayesian approach
and seek not just a point estimate of parameters a and b,
but instead to quantify the entire posterior distribution,
p(a,bly).

In order to estimate the posterior distribution of our bio-
physical model, we will rely upon another MCMC method
called the Metropolis-Hastings algorithm. First, we decide
that our observable signal, which is specified by our model
in the form of some f(6,x), is also corrupted by the inevi-
table presence of experimental noise. For our example, we
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assume that f(a,b,V) is accompanied by the presence of
normally distributed variability. This assumption is not vital,
as any noise model could be used, but it seems reasonable
in practice and is an assumption at the heart of existing
curve-fitting techniques such as error-minimization and
maximum-likelihood (22). That is, we assume that each
data point y; arises as a combination of a deterministic
function f{a,b,V) and some noisy process with unknown
variance,

yi ~f(a,b,V;) +N(0, 02), (63)

where N(u,o) denotes a normal distribution with mean u
and standard deviation ¢. Given this, our likelihood function
is simply a normal distribution centered at f and with
variance o2,

p(il...) = N(f(a,b,Vi),d%). (64)

We assume that each data point arises from f and some inde-
pendent and identically distributed noise, so the posterior
distribution is
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p(a7 b,a? ’yN) o (HN(f(a, b, Vi), 02)>p(a)p(b)p (02) )

i=1

(65)

When viewed in this way, we can start to guess that we will
not be able to use Gibbs sampling here, because our model
parameters of interest are related to our likelihood only
through a complex function f. Therefore, we have to turn
to a more general method of MCMC.

Originally proposed to solve high-dimensional problems
in particle physics, what is now known as the Metropolis-
Hastings algorithm is a very general tool for estimating
probability distributions (16,27). For simplicity, I will
describe only a special case of the Metropolis-Hastings
method, called the Metropolis random walk. Recall that
our posterior distribution of interest has three parameters:

g = {a,b,az}.

We will construct a Markov chain whose limiting distribu-
tion is the posterior p(a,b,02|yN). Using the Metropolis
random walk, this Markov chain evolves with the following
rules: At iteration i of the algorithm, the Markov chain is in
location 6; of the parameter space. We generate a proposal
movement of the chain by taking a random walk from 6,
to a new location 6. If the proposal point has higher post-
erior probability than 6; (i.e., if p(é|yN)>p(0,»|yN) ), then
we accept it and add it to the chain: 6, = 6. 1If
p(é‘yN)<p(0i|yN), then we accept § with probability «
where « is related to the decrease in posterior probability:
o= p(9|yN)/p(0,-|yN). If the proposal is rejected, the Mar-
kov chain is extended with its present location, 6;,; = 6,.
More succinctly, we can describe a single iteration of the
Metropolis random walk algorithm as

. 6~6,+N(0,2) (66)

2a. it p(Olyy)>p(Bilyw): O =0  (67)

2b. else draw u ~ UJ0,1] (68)
(Olw) -
if u< 0., =0 (69)
(6ilyw) !
else : 6[+1 = 0,', (70)

where X is a covariance matrix of our choice that specifies
the characteristics of the random-walk portion of the algo-
rithm and UJ[0,1] is the uniform distribution on the unit
interval.

Let us break down, in more detail, what this algorithm
does and how it works. The first component is that we
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attempt to take a random walk in the parameter space
and if the proposal point leads to improved posterior proba-
bility, then we keep it. This by itself would be a possible
(albeit awfully slow) optimization method for finding the
maximum of the posterior. But recall that the goal is not
to find a point estimate of the parameters, but instead to
create a Markov chain that explores the whole parameter
space in proportion to posterior probability. Thus, even if
0 leads to a decrease in posterior probability, we still might
keep it. And the probability with which we keep it is exactly
the ratio of the posterior probabilities of 6 and 6. Suppose
that 6, is in an area of high posterior probability and that
any random walk away from 0, is likely to an area of lower
posterior probability. We want the chain to be able to visit
areas of lower posterior probability and this is exactly
what the accept/reject rule achieves. If p(@| yy) is twofold
less than p(6;|yy), then we only accept 6 with probability
1/2. And if 6 is an area of much lower posterior probability,
say 100-fold worse, then we would only accept 6 with
probability 1/100. In the algorithm above, we draw uni-
formly distributed random variables and compare them to
p(g)‘ yn)/p(6;|yn) as a particularly simple way of implement-
ing this kind of accept/reject rule. Therefore the chain is
able to explore all areas of the parameter space and not
just areas of higher posterior probability than its present po-
sition. Further, the probability that the chain visits a partic-
ular location is exactly the posterior probability at that point
in the parameter space and we have successfully constructed
a Markov chain whose limiting distribution is the posterior
distribution.

It is important to appreciate what this algorithm has
gained us. We decided that we would be unable to come
up with a simple closed form for the desired posterior,
p(a,b,02| Ya), or even any conditional distributions for Gibbs
sampling. Using the Metropolis random walk, we can esti-
mate the posterior distribution for any model for which
we can calculate the likelihood and the prior. This is a major
advance. While we may not have a simple form for p(f|yy)
for the whole parameter space, if we decide on a particular
likelihood and prior, then it is straightforward to compute
the posterior probability for any particular parameter value
6;, p(6;yn). In our example, we chose a normal distribution
for the likelihood and we can choose any kind of prior that
we want for each parameter (Eq. 65). Thus, we easily walk
around the parameter space, performing calculations of
posterior probability and making accept/reject decisions
and the result is samples from the posterior distribution.

Let us return to the example of G-V curves for a demon-
stration of the Metropolis random walk. At the top of Fig. 5
is a simulated activation curve generated with a = —50 mV
and b = 0.05 mV "' and with added Gaussian noise with ¢ =
0.02. We can use these data to estimate the posterior distri-
bution p(a,b,02|yN) with the algorithm described above. In
practice, we can implement the random walk in the full
three-dimensional space (as described above), or we can
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FIGURE 5 Demonstration of Metropolis-Hastings algorithm to analyze
ion channel activation data. (Top panel) Simulated G-V curve with added
Gaussian noise. (Lower panels) (Left) MCMC trajectories for model param-
eters a and b; (right) marginal posterior distributions of each parameter with
the true values shown (vertical lines). To see this figure in color, go online.

treat each parameter sequentially (within each iteration) and
generate 6 for a single parameter with a one-dimensional
random walk. Both approaches will work but there may
be slight effects on chain mixing (see the Supporting Mate-
rial) for some models. For parameters a and b, I have used
diffuse normal priors: p(a) = N(0,100) and p(b) = N(0,5).
The result of MCMC is shown in Fig. 5 for the two param-
eters of interest, a and b. At left is the trajectory of each
parameter over the course of MCMC and we see that while
the parameters are initialized arbitrarily, they quickly
converge to areas of higher posterior probability and explore
only a small region of the parameter space. At right are his-
tograms of the marginal posterior distributions along with
the true parameter values plotted as vertical lines. Using
the Metropolis random walk, we are able to recover an ac-
curate estimate of the relevant parameters and their uncer-
tainties. Importantly, to do this we only need to be able to
calculate the expectation of the observable signal, AV|a,b),
and the likelihood, N(f,c%). Therefore, this approach can
be used very generally in nearly all modeling endeavors.

Conclusion

The Bayesian methods I have described provide a
very general paradigm for parameter inference problems
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in biophysics. With simple problems, we can calculate
posterior distributions directly by using conjugate models.
With more complex models, we can turn to computational
methods for posterior inference, such as Gibbs sampling
or the Metropolis-Hastings algorithm. Additionally, more
sophisticated sampling methods exist that will be useful
for exploring very high-dimensional posterior distributions
(8,17). These methods provide us a foothold to begin
exploring more exciting and sophisticated Bayesian models
such as Dirichlet process models (10,26) and Gaussian pro-
cess models (3,7). The use of Bayesian methods for param-
eter inference gains us three advantages. First, it allows us to
express parameter uncertainty as probability, a much more
natural notion than that of the frequentist sampling distribu-
tion. Second, we gain a simple mechanism to incorporate
into the inference process any prior information we might
have. Third, and most importantly, Bayesian inference
(with the aid of MCMC) gives us a generalizable method
of rigorously addressing parameter inference and identifi-
ability for arbitrarily complicated models.

SUPPORTING MATERIAL

Supporting Material and one figure are available at http://www.biophysj.
org/biophysj/supplemental/S0006-3495(15)00303-3.
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